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CONFORMALITY OF RIEMANNIAN
MANIFOLDS TO SPHERES

KRISHNA AMUR & V. S. HEGDE

1. Imtroduction

Let M be an orientable smooth Riemannian manifold of dimension » with
Riemannian metric g;;. Let // be the covariant differentiation operator on M,
and K,;;x, K;;, r be the Riemann curvature tensor, Ricci curvature tensor, and
scalar curvature tensor of M respectively. Let X denote the infinitesimal con-
formal transformation on M so that we have

(1.1 (£:8:; =V X; + V; X, = 2085 »

where p is a function, and .#, denotes the Lie differentiation with respect to X.
Assuming that #,r = 0 Yano, Obata, Hsiung-Mugridge, Hsiung-Stern (see
[1], [21, [6], [8]) have studied the condition for a Riemannian n-manifold M to
be conformal to an n-sphere. The purpose of this paper is to relax the condi-
tion & ,r = O further, that is, to assume ¥ ,,%,r = 0, and to obtain conditions
for M to be conformal to an n-sphere where Dp is the vector field associated
with the 1-form dp. Towards this end we prove the following theorems.
Theorem 1.1. If a compact orientable smooth Riemannian manifold M of
dimension n > 2 admitting an infinitesimal conformal transformation X : £ .8

= 2pg, p + constant with &5, v = O satisfies J’ (Aijpipf + %é”xﬁfnpr)dv
" n

> 0 where A;; = K;; — (ar/n)g;; and a = 1, then M is conformal to an n-
sphere.

Theorem 1.2. Let M be an orientable smooth Riemannian manifold of
dimension n >> 2 admitting an infinitesimal conformal transformation X satis-
fying (1.1) such that p # constant, and ¥, ,r = 0. Then M is conformal to
an n-sphere if &, %,y > 0 and £, |G} = 0 where G;; = K;; — (r/n)g;;.

Theorem 1.3. Let M be an orientable smooth Riemannian manifold of
dimension n > 2 admitting an infinitesimal conformal transformation X satis-
fying (1.1) such that p + constant and & 5, ,;r = 0. Then M is conformal to
an n-sphere if £, Fp,r > 0and &, W} = 0 where W is a tensor defined in
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It is shown in § 5 that when #,r = 0, Theorems 1.1 and 1.2 reduce to
those of Yano [6], and Theorem 1.3 reduces to that of Hsiung and Stern [2].
Also it is proved that when r = constant, the condition « = 1 in Theorem 1.1
may be replaced by @ > 1, and the manifold M would then be isometric to a
sphere. The following known theorems are needed in the proofs of our theo-
rems.

Theorem 1.4 (Obata [3]). If a compleie Riemannian manifold M of dimen-
sion n > 2 admits a nonconstant function p such that V.V ;0 = —cpg,;; where
¢ is a positive constant, then M is isometric to an n-sphere of radius 1/c.

Theorem (1.5 Tashiro [4]). If a complete Riemannian manifold M of di-
mension n > 2 admits a nonconstant function p such that V.V ;p + (1/n)deg;;
= 0, then M is conformal to an n-sphere.

2. Notations and formulas

The raising and lowering of the indices are, as usual, carried out respectively
with g% and g;;. The tensors thus obtained are called associated tensors. Let
S, T be covariant tensors of order s with local components S, ..., and T
respectively. The associated contravariant components of 7 are T%is. We
define the inner product of § and T by §,,..., T"* and denote it by {S, T>.
If § = T we write S for (S, S)>. For the sake of easy reference we list some

known formulas ; for details see Yano [7]:

fyeveis

2.1) Lo =20n— 1)dp — 2rp,

(2.2) L899 = —2p84 ,

(2.3) ZKuije = 20Kni5x — 8niV 00 + 8niVi0x — 81V nox + 8V np;
2.4) Lo Ki; = giydo — (n — 2\ 0, ,

2.5) V.F.Y —V7.F7. Y = K.,’Y*, gy Y, — vV V.Y;) =K!Y, ,

where 4 is the Laplace-Beltrami operator on M, and Y is any differentiable
vector field on M. If the associated 1-form of a vector field Y is &, the com-
ponents of 4Y and 4¢& are given by

(2.6) AY: —gtr WYt + KiY*, A& —ghr Y, + KIY, .

If 4 is the exterior differentiation operator on M, and f is any function on M,
then we denote the associated vector field of the 1-form Jf by Df.
Write f, = F;f, and ¢ = g%f;, and define the tensors Z and W by

2.7 Zyisie = Kpgje — ;(ghkgij — 8ni&ii) »
nin — 1)
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(2.8) Waiie = @y + 0,:80:Gij — 0,2,,Gir + b:2::8nk
— b,8:Grs + 081G — beg1:Gri

where a, b, - - -, by are any constants.

3. Lemmas

Lemma 3.1. Let M be a compact orientable Riemannian manifold of di-
mension n > 2. For any vector field Y and a differentiable function f we have

j ¥ YDdv = 0, j Adv =0 .
M M

The first equation is the well known Green’s formula, and the second follows
as a consequence of the first.

Lemma 3.2 (Yano and Sawaki [9]). Let M be a compact oriented
Riemannian manifold of dimension n > 2 admitting an infinitesimal non-

isometric conformal transformation X satisfving (1.1). Then for any function
f on M we have

f ofdv = —% fM Zotdv |

Lemma 3.3. For a manifold M having the same properties as in Lemma
3.2, we have

3.1) j (doydv = j oV Jodv = j Koo' — 8977 000 dv |
M M M
Furthermore, if r = constant, then
(3.2) f dpydv = _r__J‘ o' p:dv
M n—1Jdnm

Proof. V{p'dp) = oV dp — (dp) = (K307 — g*VV ;000" — (4p)* by
(2.5). Integrating and using Lemma 3.1 we get (3.1).

Setting % .r = 0 in (2.1) and using the result in (a) we obtain (3.2).

Lemma 3.4. Let M be a manifold having the same properties as in Lemma
3.2 and satisfying the condition ¥ ,, % ,r = 0. Then

(3.3) f _(pp)ds = (n — 1) f Uorav + %L{ Lo rd .

Furthermore, if ¥.r = Q, then
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(3.4) iJ‘ L oL p v = f ro;0tdv — -l—f r’o’dv .
nJu E n—1Jx

Proof. From (2.1) we have

0=, L= ZJD,,((” — Ddp — pr)
= 2[(n — DV ;dp — po'V ¥ — rp;0%] .

Integrating and using Lemmas 3.2 and 3.3 we get (3.3). If ¥,r =0, then
(n — 1)4p = pr. Substituting this in (3.3) we obtain (3.4).

4. Proofs of Theorems

Proof of Theorem 1.1. For an arbitrary vector field Y, by writing /7 =
g7, and wusing (2.5) we find that

Vj(VjYZ. + 7Y, — gggijVLYt>Yi
n
- (gjkaVjYi + VY7 4+ K Y™ — z—aVz-VcY‘> Y: 4 ga(l — ), Y
n n
1 200 : i oy 20 .. .
+ E VJYZ + VZY] —_ —gijVLY Viy 4 Fiyd _g”VLY .
n n

Putting Y* = pf, integrating the above equation, using Lemmas 3.1 and 3.3,
and setting K;; = 4;; + (re/n)g,; we get

f Auoto'do + S(—n + 20 — az)f (dpYdv + -Oif rpip'dv
M n M nJy
! o« ,
+f PPo+ Ledo dv=0.
L noo
Substituting (3.3) in the above equation and simplifying we obtain finally

M n
@.1 1 :
+ jM PPo+ -(1 + Vi@ — Din = D)gdo dv = 0.

Hence Theorem 1.1 follows from Theorem 1.5 and the integral formula (4.1).
Proof of Theorem 1.2. From (2.2) and (2.4) we easily get

4.2) (G, PPp> = —20_|GP 1

- |G} .
n—2 2(n — 2)
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On the other hand,

(4.3) V{(G00") = Gy0'0” + 0KG, VT o) + "—z_n—zp(in ) -

Multiply (4.2) by p and integrate, integrate (4.3), and eliminate I LG, VP p>dv
M

from the two resulting equations so that we have the integral formula

i, 1
IM (Gijp ‘0‘7 + -’-Efx,?ppr)dv
(4.4) ) .
= 2| (@IGF + 102.1GF)dv + | Z.Zp,rav.
- n—2Jx 4 2nlu

Hence Theorem 1.2 follows from Theorem 1.1 and the integral formula (4.4).
Proof of Theorem 1.3. From (2.7), (2.8), (2.3), (2.4) and (2.2) we get
(for details see [2])

4.5) (LW, WS = 20|WE — (G, TFp>,

where ¢ is a constant given by

€4 b+ (i (—1)i‘1bi>2
n—2 i=1 i=1

— 2(byby + byb, — byb) + (n — Dfi by .
Here ¢ > 0. Use of (2.2) yields
4.6) Lo \WE = 2L, Wy — 8p| W]
Thus from (4.3), (4.5) and (4.6) we obtain
cj (Gﬁpipf + lzﬁf,,,‘fbpr)dv
u n

@.7)
=2f pZIW]Zdv+if p$I]W[2dv+£f £ Lprdv .
o 2 Ju 2ndxm ’

Hence Theorem 1.3 follows from Theorem 1.1 and the integral formula (4.7).

5. Special cases

1. Let « =1 and %, = 0. The condition for conformality in Theorem
1.1 reduces, by (3.4), to
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j (K i — T )d >0
ol — —_)dv > 0.
P LT —

Also we have

.y

2
Z.\GP = AR}, L WP =%, K+ S 2L RT

where |K[ = K,;;xK*7* and |R}? = K,;K*. The condition &,%,,r > 0 for

M implies by (3.4) that
. r2p2 >d
ot — >0.
J b4 (rplp n—1 v=

With these, Theorem, 1.1 and 1.2 reduce to results due to Yano [6], and
Theorem 1.3 reduces to that due to Hsiung and Stern [2].

2. Let @ > 1 and r = constant. From (4.1) it follows that M is isometric
to a sphere if

J Agp0ldv > 05
rs
when « = 1, this is a known condition [5]
jwamzo
M
for M to be isometric to a sphere.
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